Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT We introduce a new approach for analysing the intergalactic medium (IGM) damping wings imprinted on the proximity zones of quasars in the epoch of reionization (EoR). Whereas past work has typically forgone the additional constraining power afforded by the blue side continuum ($$\lambda \lesssim 1280\,$$ Å) and/or opted not to model the large correlated IGM transmission fluctuations in the proximity zone ($$\lambda \lesssim 1216\,$$ Å), we construct a generative probabilistic model for the entire spectrum accounting for all sources of error – the stochasticity induced by patchy reionization, the impact of the quasar’s ionizing radiation on the IGM, the unknown intrinsic spectrum of the quasar, and spectral noise. This principled Bayesian method allows us to marginalize out nuisance parameters associated with the quasar’s radiation and its unknown intrinsic spectrum to precisely measure the IGM neutral fraction, $$\langle x_{\rm H\,\small{I}}\rangle$$. A key element of our analysis is the use of dimensionality reduction (DR) to describe the intrinsic quasar spectrum via a small number of nuisance parameters. Using a large sample of 15 559 SDSS/BOSS quasars at $$z \gtrsim 2.15$$ we trained and quantified the performance of six distinct DR methods, and find that a six parameter principal component analysis model (five coefficients plus a normalization) performs best, with complex machine-learning approaches providing no advantage. By conducting statistical inference on 100 realistic mock EoR quasar spectra, we demonstrate the reliability of the credibility contours that we obtain on $$\langle x_{\rm H\,{\small{I}}}\rangle$$ and the quasar lifetime, $$t_{\rm Q}$$. The new method introduced here will transform IGM damping wings into a precision probe of reionization, on the same solid methodological and statistical footing as other precision cosmological measurements.more » « less
-
ABSTRACT We present optical and near-infrared (NIR) spectroscopic observations for a sample of 45 quasars at $$6.50 < z \le 7.64$$ with absolute magnitudes at 1450 Å in the range $$-28.82 \le M_{1450} \le -24.13$$ and their composite spectrum. The median redshift and $$M_{1450}$$ of the quasars in the sample are $$z_{\rm {median}}=6.71$$ and $$M_{1450,\rm {median}} \simeq -26.1$$, respectively. The NIR spectra are taken with Echelle spectrographs, complemented with additional data from optical long slit instruments, and then reduced consistently using the open-source Python-based spectroscopic data reduction pipeline PypeIt. The median of the mean signal-to-noise ratios per 110 km s$$^{-1}$$ pixel in the J, H, and K band [median $$\langle \rm {SNR}_{\lambda } \rangle$$] is median $$\langle \rm {SNR}_{J} \rangle =9.7$$, median $$\langle \rm {SNR}_{H} \rangle =10.3$$, and median $$\langle \rm {SNR}_{K} \rangle =11.7$$; demonstrating the good data quality. This work presents the largest medium-/moderate-resolution sample of quasars at $z>6.5$ from ground-based instruments. Despite the diversity in instrumental set-ups and spectral quality, the data set is uniformly processed and well-characterized, making it ideally suited for several scientific goals, including the study of the quasar proximity zones and damping wings, the Ly $$\alpha$$ forest, the intergalactic medium’s metal content, as well as other properties such as the distribution of SMBH masses and Eddington ratios. Our composite spectrum is compared to others at both high and low z from the literature, showing differences in the strengths of many emission lines, probably due to differences in luminosity among the samples, but a consistent continuum slope, which proves that the same spectral features are preserved in quasars at different redshift ranges.more » « less
-
ABSTRACT Lyman α emitters (LAEs) are excellent probes of the reionization process, as they must be surrounded by large ionized bubbles in order to be visible during the reionization era. Large ionized regions are thought to correspond to overdense regions and may be protoclusters, making them interesting test-beds for early massive structures. Close associations containing several LAEs are often assumed to mark overdense, ionized bubbles. Here, we develop the first framework to quantify the ionization and density fields of high-z galaxy associations. We explore the interplay between (i) the large-scale density of a survey field, (ii) Poisson noise due to the small number density of bright sources at high redshifts (z ∼ 7), and (iii) the effects of the ionized fraction on the observation of LAEs. We use Bayesian statistics, a simple model of reionization, and a Monte Carlo simulation to construct a more comprehensive method for calculating the large-scale density of LAE regions than previous works. We find that Poisson noise has a strong effect on the inferred density of a region and show how the ionized fraction can be inferred. We then apply our framework to the strongest association yet identified: Hu et al. found 14 LAEs in a volume of ∼50 000 cMpc3 inside the COSMOS field at z ∼ 7. We show that this is most likely a 2.4σ overdensity inside of an ionized or nearly ionized bubble. We also show that this LAE association implies that the global ionized fraction is $$\bar{Q} = 0.59^{+0.10}_{-0.11}$$, within the context of a simple reionization model.more » « less
-
Abstract Fluctuations in Lyman-α (Lyα) forest transmission towards high-z quasars are partially sourced from spatial fluctuations in the ultraviolet background (UVB), the level of which are set by the mean free path of ionizing photons (λmfp). The auto-correlation function of Lyα forest flux characterizes the strength and scale of transmission fluctuations and, as we show, is thus sensitive to λmfp. Recent measurements at z ∼ 6 suggest a rapid evolution of λmfp at z > 5.0 which would leave a signature in the evolution of the auto-correlation function. For this forecast, we model mock Lyα forest data with properties similar to the XQR-30 extended data set at 5.4 ≤ z ≤ 6.0. At each z we investigate 100 mock data sets and an ideal case where mock data matches model values of the auto-correlation function. For ideal data with λmfp = 9.0 cMpc at z = 6.0, we recover $$\lambda _{\text{mfp}}=12^{+6}_{-3}$$ cMpc. This precision is comparable to direct measurements of λmfp from the stacking of quasar spectra beyond the Lyman limit. Hypothetical high-resolution data leads to a $$\sim 40{{\%}}$$ reduction in the error bars over all z. The distribution of mock values of the auto-correlation function in this work is highly non-Gaussian for high-z, which should caution work with other statistics of the high-z Lyα forest against making this assumption. We use a rigorous statistical method to pass an inference test, however future work on non-Gaussian methods will enable higher precision measurements.more » « less
-
ABSTRACT We present the first observational measurements of the Lyman-α (Ly α) forest flux autocorrelation functions in ten redshift bins from 5.1 ≤ z ≤ 6.0. We use a sample of 35 quasar sightlines at z > 5.7 from the extended XQR-30 data set; these data have signal-to-noise ratios of >20 per spectral pixel. We carefully account for systematic errors in continuum reconstruction, instrumentation, and contamination by damped Ly α systems. With these measurements, we introduce software tools to generate autocorrelation function measurements from any simulation. Our measurements of the smallest bin of the autocorrelation function increase with redshift when normalizing by the mean flux, 〈F〉. This increase may come from decreasing 〈F〉 or increasing mean free path of hydrogen-ionizing photons, λmfp. Recent work has shown that the autocorrelation function from simulations at z > 5 is sensitive to λmfp, a quantity that contains vital information on the ending of reionization. For an initial comparison, we show our autocorrelation measurements with simulation models for recently measured λmfp values and find good agreements. Further work in modelling and understanding the covariance matrices of the data is necessary to get robust measurements of λmfp from this data.more » « less
-
Abstract The [Cii] 158μm emission line and the underlying far-infrared (FIR) dust continuum are important tracers for studying star formation and kinematic properties of early galaxies. We present a survey of the [Cii] emission lines and FIR continua of 31 luminous quasars atz> 6.5 using the Atacama Large Millimeter Array (ALMA) and the NOrthern Extended Millimeter Array at sub-arcsec resolution. This survey more than doubles the number of quasars with [Cii] and FIR observations at these redshifts and enables statistical studies of quasar host galaxies deep into the epoch of reionization. We detect [Cii] emission in 27 quasar hosts with a luminosity range ofL[CII]= (0.3–5.5) × 109L⊙and detect the FIR continuum of 28 quasar hosts with a luminosity range ofLFIR= (0.5–13.0) × 1012L⊙. BothL[CII]andLFIRare correlated (ρ≃ 0.4) with the quasar bolometric luminosity, albeit with substantial scatter. The quasar hosts detected by ALMA are clearly resolved with a median diameter of ∼5 kpc. About 40% of the quasar host galaxies show a velocity gradient in [Cii] emission, while the rest show either dispersion-dominated or disturbed kinematics. Basic estimates of the dynamical masses of the rotation-dominated host galaxies yieldMdyn= (0.1–7.5) × 1011M⊙. Considering our findings alongside those of literature studies, we found that the ratio betweenMBHandMdynis about 10 times higher than that of localMBH–Mdynrelation on average but with substantial scatter (the ratio difference ranging from ∼0.6 to 60) and large uncertainties.more » « less
-
Abstract Observed scatter in the Lyαopacity of quasar sightlines atz< 6 has motivated measurements of the correlation between Lyαopacity and galaxy density, as models that predict this scatter make strong and sometimes opposite predictions for how they should be related. Our previous work associated two highly opaque Lyαtroughs atz∼ 5.7 with a deficit of Lyαemitting galaxies (LAEs). In this work, we survey two of the most highly transmissive lines of sight at this redshift toward thez= 6.02 quasar SDSS J1306+0356 and thez= 6.17 quasar PSO J359-06. We find that both fields are underdense in LAEs within 10h−1Mpc of the quasar sightline, somewhat less extensive than underdensities associated with Lyαtroughs. We combine our observations with three additional fields from the literature and find that while fields with extreme opacities are generally underdense, moderate opacities span a wider density range. The results at high opacities are consistent with models that invoke UV background fluctuations and/or late reionization to explain the observed scatter in intergalactic medium (IGM) Lyαopacities. There is tension at low opacities, however, as the models tend to associate lower IGM Lyαopacities with higher densities. Although the number of fields surveyed is still small, the low-opacity results may support a scenario in which the ionizing background in low-density regions increases more rapidly than some models suggest after becoming ionized. Elevated gas temperatures from recent reionization may also be making these regions more transparent.more » « less
-
Abstract Protoclusters, the progenitors of galaxy clusters, trace large scale structures in the early Universe and are important to our understanding of structure formation and galaxy evolution. To date, only a handful of protoclusters have been identified in the Epoch of Reionization. As one of the rarest populations in the early Universe, distant quasars that host active supermassive black holes are thought to reside in the most massive dark matter halos at that cosmic epoch and could thus potentially pinpoint some of the earliest protoclusters. In this Letter, we report the discovery of a massive protocluster around a luminous quasar atz= 6.63. This protocluster is anchored by the quasar and includes three [Cii] emitters atz∼ 6.63, 12 spectroscopically confirmed Lyαemitters (LAEs) at 6.54 <z≤ 6.64, and a large number of narrow-band-imaging selected LAE candidates at the same redshift. This structure has an overall overdensity of within ∼35 × 74 cMpc2on the sky and an extreme overdensity ofδ> 30 in its central region (i.e.,R≲ 2 cMpc). We estimate that this protocluster will collapse into a galaxy cluster with a mass of at the current epoch, more massive than the most massive clusters known in the local Universe such as Coma. In the quasar vicinity, we discover a double-peaked LAE, which implies that the quasar has a UV lifetime greater than 0.8 Myrs and has already ionized its surrounding intergalactic medium.more » « less
-
ABSTRACT Efficient and accurate simulations of the reionization epoch are crucial to exploring the vast uncharted parameter space that will soon be constrained by measurements of the 21-cm power spectrum. One of these parameters, Rmax, is meant to characterize the absorption of photons by residual neutral gas inside of ionized regions, but has historically been implemented in a very simplistic fashion acting only as a maximum distance that ionizing photons can travel. We leverage the correspondence between excursion set methods and the integrated flux from ionizing sources to define two physically motivated prescriptions of the mean free path (MFP) of ionizing photons that smoothly attenuate the contribution from distant sources. Implementation of these methods in seminumerical reionization codes requires only modest additional computational effort due to the fact that spatial filtering is still performed on scales larger than the characteristic absorption distance. We find that our smoothly defined MFP prescriptions more effectively suppress large-scale structures in the ionization field in seminumerical reionization simulations compared to the standard Rmax approach, and the magnitude of the MFP modulates the power spectrum in a much smoother manner. We show that this suppression of large-scale power is significant enough to be relevant for upcoming 21-cm power spectrum observations. Finally, we show that in our model, the MFP plays a larger role in regulating the reionization history than in models using Rmax.more » « less
-
Abstract The variations in Lyαforest opacity observed atz> 5.3 between lines of sight to different background quasars are too strong to be caused by fluctuations in the density field alone. The leading hypothesis for the cause of this excess variance is a late, ongoing reionization process at redshifts below six. Another model proposes strong ionizing background fluctuations coupled to a short, spatially varying mean free path of ionizing photons, without explicitly invoking incomplete reionization. With recent observations suggesting a short mean free path atz∼ 6, and a dramatic improvement inz> 5 Lyαforest data quality, we revisit this latter possibility. Here, we apply the likelihood-free inference technique of approximate Bayesian computation (ABC) to jointly constrain the hydrogen photoionization rate ΓHIand the mean free path of ionizing photonsλmfpfrom the effective optical depth distributions atz= 5.0–6.1 from XQR-30. We find that the observations are well-described by fluctuating mean free path models with average mean free paths that are consistent with the steep trend implied by independent measurements atz∼ 5–6, with a concomitant rapid evolution of the photoionization rate.more » « less
An official website of the United States government
